
© 2013 IBM Corporation

Exploiting The Latest KVM Features For Optimized
Virtualized Enterprise Storage Performance

Dr. Khoa Huynh (khoa@us.ibm.com)
IBM Linux Technology Center

mailto:khoa@us.ibm.com
mailto:khoa@us.ibm.com

© 2013 IBM Corporation2 IBM, Linux, and Building a Smarter Planet

• Overview – KVM I/O architecture
– Key performance challenges for storage I/O in virtualized environments

• Solving key performance challenges
– Solutions & prototypes
– Performance results
– Performance recommendations

• Other recent performance features

• Recap

Agenda

© 2013 IBM Corporation3 IBM, Linux, and Building a Smarter Planet

KVM I/O Architecture … at 10,000 Feet

●Applications and guest
OS run inside KVM
Guest just like they run
bare metal

●Guest interfaces with
emulated hardware
presented by QEMU

●QEMU submits I/Os to
host on behalf of guest

●Host kernel treats
guest I/Os like any
user-space application

LINUX
KERNELPhysical Drivers

File System / Block / NFS

KVM HOST

HARDWARE

cpu0 cpuM….

LINUX
KERNELPhysical Drivers

File System / Block / NFS

KVM HOST

LINUX
KERNELPhysical Drivers

File System / Block / NFS

KVM HOST

LINUX
KERNELPhysical Drivers

File System / Block / NFS

KVM HOST

HARDWARE

cpu0 cpuM….

HARDWARE

cpu0 cpuM….

Applications

File System
& Block

Drivers

KVM GUEST

KVM Guest’s
Kernel

vcpu0 vcpuN…

Applications

File System
& Block

Drivers

KVM GUEST

KVM Guest’s
Kernel

vcpu0 vcpuN…

KVM (kvm.ko)

iothread

Hardware
Emulation

(QEMU)

KVM (kvm.ko)

iothread

Hardware
Emulation

(QEMU)

Generates I/O
requests to host on

guest’s behalf &
handle events

Only one thread
may be executing
QEMU code at any

given time

Notes:
Each guest CPU has a dedicated vcpu
thread that uses kvm.ko module to
execute guest code
There is an I/O thread that runs a
select(2) loop to handle events

Generates I/O
requests to host on

guest’s behalf &
handle events

Only one thread
may be executing
QEMU code at any

given time

Notes:
Each guest CPU has a dedicated vcpu
thread that uses kvm.ko module to
execute guest code
There is an I/O thread that runs a
select(2) loop to handle events

© 2013 IBM Corporation4 IBM, Linux, and Building a Smarter Planet

• Low throughput / high latencies (compared to bare metal)
– Generally less than 30% of bare metal → configuration issue(s)
– Between 30% and 60% of bare metal → performance tuning
– With proper configuration + performance tuning → 90% or more

• Low I/O rates (IOPS)
– Some enterprise workloads require 100Ks I/Os Per Second (IOPS)
– Most difficult challenge for I/O virtualization!
– Current KVM tops out at ~147,000 IOPS
– VMware claimed vSphere v5.1 could achieve 1.06 million IOPS for a single guest

So … What Are The Key Performance Challenges?

© 2013 IBM Corporation5 IBM, Linux, and Building a Smarter Planet

Issue – Low Throughput / High Latencies

© 2013 IBM Corporation6 IBM, Linux, and Building a Smarter Planet

• Device assignment (pass-through)
– Pass physical device directly to guest
– High performance
– No device sharing among multiple guests
– Difficult for live migration
– PCI device limit (8) per guest

• Full virtualization – IDE, SATA, SCSI
– Good guest compatibility
– Bad performance (many trap-and-emulate operations), does not scale beyond 1

thread ← Not recommended for enterprise storage

• Para-virtualization – virtio-blk, virtio-scsi
– Efficient guest ↔ host communication through virtio ring buffer (virtqueue)
– Good performance
– Virtualization benefits (e.g. device sharing among guests, etc.)

I/O Virtualization Approaches

© 2013 IBM Corporation7 IBM, Linux, and Building a Smarter Planet

Virtio-blk Storage Configurations

Host Server

KVM
Guest

LVM Volume on
Virtual Devices

Physical Storage

Applications
Direct I/O w/

Para-Virtualized
Drivers

Block Devices
/dev/sda,
/dev/sdb,…

Device-Backed Virtual Storage

Virtual Devices
/dev/vda, /dev/vdb,…

Host Server

KVM
Guest

LVM Volume on
Virtual Devices

Physical Storage

Applications
Direct I/O w/

Para-Virtualized
Drivers

Block Devices
/dev/sda,
/dev/sdb,…

Device-Backed Virtual Storage

Virtual Devices
/dev/vda, /dev/vdb,…

Host Server

KVM
Guest

LVM
Volume

Physical Storage

File

Applications

Para-
virtualized

Drivers, Direct
I/O

RAW or
QCOW2

File-Backed Virtual Storage

Host Server

KVM
Guest

LVM
Volume

Physical Storage

File

Applications

Para-
virtualized

Drivers, Direct
I/O

RAW or
QCOW2

File-Backed Virtual Storage

© 2013 IBM Corporation8 IBM, Linux, and Building a Smarter Planet

KVM Block I/O Performance
FFSB Benchmark w/ Direct I/O on LVM Volume

KVM Guest = 2 vCPUs, 4GB; Host = 16 CPUs, 12GB
Physical Storage = 8 x RAID10 Disk Arrays (192 Disks), 4 x DS3400 Controllers, 2 x FC Host Adapters

0.90 0.92 0.91

0.69

0.88

0.78

0.53

0.89

0.69

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Data Streaming Random I/O Overall

Th
ro

ug
hp

ut
 R

el
at

iv
e

To
 B

ar
e

M
et

al

Bare Metal
Device-Backed Virtual Storage
RAW-File-Backed Virtual Storage
QCOW2-File-Backed Virtual Storage

Notes:
FFSB = Flexible File System Benchmark (http://sourceforge.net/projects/ffsb/)
Data Streaming (sequential reads, sequential writes) with block sizes of 8KB and 256KB
Random Mixed Workloads = random reads, random writes, mail server, mixed DB2 workloads (8KB block size)

Storage Performance Results

© 2013 IBM Corporation9 IBM, Linux, and Building a Smarter Planet

Storage Performance Recommendations

 Use VirtIO drivers (IDE emulation does NOT scale beyond 1 thread)
 Virtual Storage

 If possible, pass whole partitions or block devices to guest (device-backed virtual disks) instead of host files
 PCI pass-through is better than device-backed virtual disks, but cannot easily migrate

 Virtual Image Format
 RAW offers the best performance, but QCOW2 performance has improved significantly since RHEL 6.1 and upstream

 Guest Caching Mode
 cache = writethough is the default & provides data integrity in all cases (disk cache not exposed to guest)
 cache = writethrough is great for read-intensive workloads (host’s page cache enabled)
 cache = none is great for write-intensive workloads or workloads involving NFS remote storage (host’s page cache disable and

disk write cache enabled)
 Guest I/O Model

 Linux AIO support (aio=native) provides better performance in many cases, especially with multiple threads
 I/O Scheduler

 Deadline I/O scheduler yields the best performance for I/O-intensive workloads (much better than the default CFQ scheduler)
 Miscellaneous

 Enable x2APIC support for guest  2% to 5% performance gain for I/O-intensive workloads
 Disable unnecessary features: delay accounting (nodelayacct kernel boot parameter), random entropy contribution (sysfs)
 Avoid memory over-commit in KVM host (much worse than CPU over-commit)

Proper Configuration & Performance Tuning make BIG difference!

© 2013 IBM Corporation10 IBM, Linux, and Building a Smarter Planet

Storage Performance Recommendations (cont'd)
 KVM Guest Configuration:

 Use 2 or more virtual CPUs in the guest for I/O-intensive workloads
 Allocate enough memory in the guest to avoid memory overcommit
 Do not format virtual disks with ext4 on RHEL5

 RHEL5 does not have performance optimizations for ext4
 Use deadline I/O scheduler in the guest
 Use Time Stamp Counter (TSC) as clocksource (if host CPU supports TSC)
 64-bit guest on 64-bit host has the best I/O performance in most cases

 NFS Remote Storage
 If RHEL5.5 (or earlier version) is used on KVM host, need kvm-83-164.el5_5.15 or later

 Reduce number of lseek operations  up to 3X improvement in NFS throughput and 40% reduction in guest’s virtual
CPU usage

 Patches are included in RHEL5.6 and later (and upstream QEMU)
 If RHEL6.0 or 6.1 is used on KVM host, need an errata package for RHEL6.1 (http://rhn.redhat.com/errata/RHBA-2011-

1086.html)
 RHEL6 QEMU uses vector I/O constructs for handling guest I/O’s, but NFS client (host) does not support vector I/O, so

large guest I/O’s are broken into 4KB requests
 This issue was fixed in RHEL6.2 (NFS client now supports vector I/O)

 Use Deadline I/O scheduler
 Ensure NFS read / write sizes are sufficiently large, especially for large I/O’s
 Ensure NFS server(s) have enough NFS threads to handle multi-threaded workloads
 NFS exports = sync (default), w_nodelay
 For distributed parallel file-system with large block sizes used in cloud’s storage systems, need ability to avoid

reading/writing multiple blocks for each I/O that is smaller than block size

© 2013 IBM Corporation11 IBM, Linux, and Building a Smarter Planet

Issue – Low I/O Rates (IOPS)

© 2013 IBM Corporation12 IBM, Linux, and Building a Smarter Planet

• Many enterprise workloads (e.g. databases, ERP systems, low-latency financial
trading applications, etc.) require very high I/O rates
– Some demand well over 500,000 I/Os Per Second (IOPS)

• KVM can typically handle only up to ~147,000 IOPS
– Very high I/O rates present significant challenge to virtualization
– Primary reason why many enterprise workloads have not been migrated to virtualized

environments

• Challenge from other hypervisors
– (2011) VMware vSphere 5.0 – 300,000 IOPS for single VM; 1 million IOPS for 6 VMs

@ 8KB I/O size
– (2012) VMware vSphere 5.1 – 1 Million IOPS for a single VM @ 4KB I/O size
– (2012) Microsoft Hyper-V – 700,000 IOPS for a single host @ 512-byte I/O size

Some Background

© 2013 IBM Corporation13 IBM, Linux, and Building a Smarter Planet

Possible Paths To Very High I/O Rates (1 million IOPS)

• PCI Pass-through (PCI Device Assignment)
– Currently stands at ~800,000 IOPS @ 8KB I/O size, ~950,000 IOPS @ 4KB I/O size
– Limit of 8 PCI devices per VM (guest)
– No virtualization benefits; difficult for live migration

• Virtio-blk Optimization
– Virtio-blk can traditionally support up to ~147,000 I/O Operations Per Second (IOPS)
– Performance profiling → Big QEMU Lock

• Allows core QEMU components to ignore multi-threading (historically)
• Creates scalability problems

– Need to bypass or relieve Big QEMU Lock as much as possible

© 2013 IBM Corporation14 IBM, Linux, and Building a Smarter Planet

Bypassing Big QEMU Lock in virtio-blk
• Vhost-blk

– Initially coded by Liu Yuan, new prototype by Asias He
– Submits guest I/Os directly to host via kernel threads (similar to vhost_net for network)
– Drawbacks:

• Involves the kernel (ring 0 privilege, etc.)
• Cannot take advantage of QEMU features (e.g. image formats, etc.)
• Cannot support live migration

• “Data-Plane” QEMU
– Coded by Stefan Hajnoczi (~1500 LOC)
– Submits guest I/Os directly to host in user space (one user-space thread per virtual

block device)
– Will become default mode of operations – eventually
– No kernel change is required

Both approaches have comparable performance in our testing!

© 2013 IBM Corporation15 IBM, Linux, and Building a Smarter Planet

Virtio-blk-data-plane:
– Accelerated data path for para-virtualized

block I/O driver
– Using per-device dedicated threads and

Linux AIO support in the host kernel for I/O
processing – without going through QEMU
block layer
• No need to acquire big QEMU lock

Availability
– Accepted upstream (qemu-1.4.0 or later)
– Available as Technology Preview in Red

Hat Enterprise Linux 6.4 and SUSE Linux
Enterprise Server 11 SP3

“Data-Plane”

KVM Guest

Host Kernel

QEMU Event
Loop

Virtio-blk-
data-plane
thread(s)

Linux AIO

ioeventfdirqfd

KVM Guest

Host Kernel

QEMU Event
Loop

Virtio-blk-
data-plane
thread(s)

Linux AIO

ioeventfdirqfd

“Most exciting development in QEMU in the last 5 years!”
- Anthony Liguori (QEMU Maintainer)

© 2013 IBM Corporation16 IBM, Linux, and Building a Smarter Planet

How To Enable Virtio-blk-data-plane?
Libvirt Domain XML

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
...
 <disk type='file' device='disk'>
 <driver name='qemu' type='raw' cache='none' io='native'/>
 <source file='path/to/disk.img'/>
 <target dev='vda' bus='virtio'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
 </disk>
...
 <qemu:commandline>
 <qemu:arg value='-set'/>
 <qemu:arg value='device.virtio-disk0.scsi=off'/>
 </qemu:commandline>
 <!-- config-wce=off is not needed in RHEL 6.4 -->
 <qemu:commandline>
 <qemu:arg value='-set'/>
 <qemu:arg value='device.virtio-disk0.config-wce=off'/>
 </qemu:commandline>
 <qemu:commandline>
 <qemu:arg value='-set'/>
 <qemu:arg value='device.virtio-disk0.x-data-plane=on'/>
 </qemu:commandline>
<domain>

QEMU command-line

qemu -drive if=none,id=drive0,cache=none,aio=native,format=raw,file=path/to/disk.img \
 -device virtio-blk,drive=drive0,scsi=off,config-wce=off,x-data-plane=on

© 2013 IBM Corporation17 IBM, Linux, and Building a Smarter Planet

• Current limitations
– Only raw image format is supported

• Other image formats depend on QEMU block layer
– Live migration is not supported
– Hot unplug and block jobs are not supported
– I/O throttling limits are ignored
– Only Linux hosts are supported (due to Linux AIO usage)

• On-going work (for upcoming QEMU releases)
– Patches have recently been submitted upstream to convert virtio-net to use

“data-plane”
– Reduce the scope of big QEMU lock → moving to RCU (Read Copy Update)

BUT

© 2013 IBM Corporation18 IBM, Linux, and Building a Smarter Planet

• Highest virtualized storage I/O rates ever reported for a single virtual machine
(guest)

• Red Hat Enterprise Linux 6.4
– 1.20 million IOPS @ 8KB I/O size for a single guest
– 1.58 million IOPS @ 4KB I/O size for a single guest

• Upstream QEMU / SLES 11 SP3
– 1.37 million IOPS @ 8KB I/O size for a single guest
– 1.61 million IOPS @ 4KB I/O size for a single guest
– More efficient memory-mapping infrastructure (in QEMU)
– Approaching bare-metal limit of our storage setup

• 50% higher than the closest competing hypervisor (VMware vSphere 5.1)

• Low latencies and consistent throughput for storage I/O requests

Performance Results – “Data-Plane”

© 2013 IBM Corporation19 IBM, Linux, and Building a Smarter Planet

• Needed a storage setup capable of delivering > 1 Million IOPS

Host Server

KVM Guest

SCSI
Target

Servers
(7)

FIO
Benchmark

KVM Configuration

(IBM x3850 X5)

Random
Reads +

Writes (50%
Split)

8-Gbps Qlogic Adapters (Dual-
Ported)

(40 vCPUs,
8GB, 42 LUNs)

Host Server: IBM® System x3850 X5
– 4 x E7-4870 sockets (40 Cores @ 2.40 GHz),

256GB Memory (Total)
Storage:

– 7 x 8-Gbps, dual-ported QLogic® HBA’s hooked
to 7 SCSI target servers

– Each SCSI target server is backed by RAM disks
and provides 2 PCI devices (ports) and 8 LUNs
(56 LUNs total)

Virtual Machine (Guest):
– 40 vCPUs, 8 GB memory, 42 LUNs
– No host cache (cache=none)
– FIO workload:

– 1 job per LUN
– Queue depth = 32
– Direct I/O’s
– Engine = libaio

Host Server

KVM Guest

SCSI
Target

Servers
(7)

FIO
Benchmark

KVM Configuration

(IBM x3850 X5)

Random
Reads +

Writes (50%
Split)

8-Gbps Qlogic Adapters (Dual-
Ported)

(40 vCPUs,
8GB, 42 LUNs)

Host Server: IBM® System x3850 X5
– 4 x E7-4870 sockets (40 Cores @ 2.40 GHz),

256GB Memory (Total)
Storage:

– 7 x 8-Gbps, dual-ported QLogic® HBA’s hooked
to 7 SCSI target servers

– Each SCSI target server is backed by RAM disks
and provides 2 PCI devices (ports) and 8 LUNs
(56 LUNs total)

Virtual Machine (Guest):
– 40 vCPUs, 8 GB memory, 42 LUNs
– No host cache (cache=none)
– FIO workload:

– 1 job per LUN
– Queue depth = 32
– Direct I/O’s
– Engine = libaio

First Thing First

© 2013 IBM Corporation20 IBM, Linux, and Building a Smarter Planet

qemu-kvm -M pc -mem-path /hugepages -m 7168 -cpu qemu64,+x2apic -smp 40 -name guest1 -uuid 1c047c62-c21a-1530-33bf-185bc15261d8 -boot c
-drive if=none,id=root,file=/khoa/images/if1n1_sles11.img -device virtio-blk-pci,drive=root -drive if=none,id=drive-virtio-
disk1_0,file=/dev/sdc,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=5.0,multifunction=on,drive=drive-virtio-disk1_0,id=virtio-disk1_0 -drive if=none,id=drive-virtio-
disk1_1,file=/dev/sdd,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=5.1,multifunction=on,drive=drive-virtio-disk1_1,id=virtio-disk1_1 -drive if=none,id=drive-virtio-
disk1_2,file=/dev/sde,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=5.2,multifunction=on,drive=drive-virtio-disk1_2,id=virtio-disk1_2 -drive if=none,id=drive-virtio-
disk2_0,file=/dev/sdg,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=6.0,multifunction=on,drive=drive-virtio-disk2_0,id=virtio-disk2_0 -drive if=none,id=drive-virtio-
disk2_1,file=/dev/sdh,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=6.1,multifunction=on,drive=drive-virtio-disk2_1,id=virtio-disk2_1 -drive if=none,id=drive-virtio-
disk2_2,file=/dev/sdi,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=6.2,multifunction=on,drive=drive-virtio-disk2_2,id=virtio-disk2_2 -drive if=none,id=drive-virtio-
disk3_0,file=/dev/sdk,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=7.0,multifunction=on,drive=drive-virtio-disk3_0,id=virtio-disk3_0 -drive if=none,id=drive-virtio-
disk3_1,file=/dev/sdl,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=7.1,multifunction=on,drive=drive-virtio-disk3_1,id=virtio-disk3_1 -drive if=none,id=drive-virtio-
disk3_2,file=/dev/sdm,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=7.2,multifunction=on,drive=drive-virtio-disk3_2,id=virtio-disk3_2 -drive if=none,id=drive-virtio-
disk4_0,file=/dev/sdo,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=8.0,multifunction=on,drive=drive-virtio-disk4_0,id=virtio-disk4_0 -drive if=none,id=drive-virtio-
disk4_1,file=/dev/sdp,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=8.1,multifunction=on,drive=drive-virtio-disk4_1,id=virtio-disk4_1 -drive if=none,id=drive-virtio-
disk4_2,file=/dev/sdq,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=8.2,multifunction=on,drive=drive-virtio-disk4_2,id=virtio-disk4_2 -drive if=none,id=drive-virtio-
disk5_0,file=/dev/sds,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=9.0,multifunction=on,drive=drive-virtio-disk5_0,id=virtio-disk5_0 -drive if=none,id=drive-virtio-
disk5_1,file=/dev/sdt,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=9.1,multifunction=on,drive=drive-virtio-disk5_1,id=virtio-disk5_1 -drive if=none,id=drive-virtio-
disk5_2,file=/dev/sdu,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=9.2,multifunction=on,drive=drive-virtio-disk5_2,id=virtio-disk5_2 -drive if=none,id=drive-virtio-
disk6_0,file=/dev/sdw,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=10.0,multifunction=on,drive=drive-virtio-disk6_0,id=virtio-disk6_0 -drive if=none,id=drive-virtio-
disk6_1,file=/dev/sdx,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=10.1,multifunction=on,drive=drive-virtio-disk6_1,id=virtio-disk6_1 -drive if=none,id=drive-virtio-
disk6_2,file=/dev/sdy,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=10.2,multifunction=on,drive=drive-virtio-disk6_2,id=virtio-disk6_2 -drive if=none,id=drive-virtio-
disk7_0,file=/dev/sdaa,cache=none,aio=native -device virtio-blk-pci,scsi

Qemu-kvm Command Line For “Data-Plane” Testing

© 2013 IBM Corporation21 IBM, Linux, and Building a Smarter Planet

Single KVM Guest
RHEL 6.4 with virtio-blk-data-plane

FIO Benchmark, Direct Random I/Os (50% Reads, 50% Writes)
KVM Host = IBM x3850 X5 (Intel E7-8870@2.4GHz, 40 Cores, 256GB)

0.0

200,000.0

400,000.0

600,000.0

800,000.0

1,000,000.0

1,200,000.0

1,400,000.0

1,600,000.0

1,800,000.0

512 B 1 KB 2 KB 4 KB 8 KB

I/O Size

IO
PS

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

A
ve

ra
ge

 L
at

en
cy

 (m
s)

IOPS Average Read Latency (ms) Average Write Latency (ms)

© 2013 IBM Corporation22 IBM, Linux, and Building a Smarter Planet

KVM vs. Competing Hypervisors
Direct Random I/Os at 4KB Block Size

Host Server = Intel E7-8870@2.4GHz, 40 Cores, 256GB

1,059,304

400,000

147,365

1,577,684.0

1,613,288.0

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000

VMware vSphere 5.1 (Single
Guest)

Microsoft Hyper-V (Single
Host, Multiple Guests)

KVM (normal I/O path - Single
Guest)

RHEL 6.4 KVM (with virtio-blk-
data-plane - Single Guest)

Upstream KVM (with virtio-
blk-data-plane - Single Guest)

I/O's Per Second (IOPS)

52% Higher

Higher is better

KVM vs. Competing Hypervisors
Direct Random I/Os at 4KB Block Size

Host Server = Intel E7-8870@2.4GHz, 40 Cores, 256GB

1,059,304

400,000

147,365

1,577,684.0

1,613,288.0

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000

VMware vSphere 5.1 (Single
Guest)

Microsoft Hyper-V (Single
Host, Multiple Guests)

KVM (normal I/O path - Single
Guest)

RHEL 6.4 KVM (with virtio-blk-
data-plane - Single Guest)

Upstream KVM (with virtio-
blk-data-plane - Single Guest)

I/O's Per Second (IOPS)

52% Higher

Higher is better

© 2013 IBM Corporation23 IBM, Linux, and Building a Smarter Planet

KVM vs. Competing Hypervisors
Direct Random I/Os Across Various Block Sizes

Host Server = Intel E7-8870@2.4GHz, 40 Cores, 256GB

0.0

200,000.0

400,000.0

600,000.0

800,000.0

1,000,000.0

1,200,000.0

1,400,000.0

1,600,000.0

1,800,000.0

512 B 1 KB 2 KB 4 KB 8 KB

I/O Size

I/O
 O

pe
ra

tio
ns

 P
er

 S
ec

on
d

(IO
PS

)

SLES11 SP3 KVM w/ virtio-blk-data-
plane (Single Guest)
RHEL 6.4 KVM w/ virtio-blk-data-
plane (Single Guest)
RHEL 6.3 KVM w/ PCI Pass-through
(Single Guest)
Microsoft Hyper-V (Single Host,
Multiple Guests)
VMware vSphere 5 (Single Guest)

vSphere 5.1

vSphere 5.0

Higher is better

PCI Pass-through (RHEL6.3)

virtio-blk-data-plane (SLES11 SP3 / upstream)

virtio-blk-data-plane (RHEL 6.4)

KVM vs. Competing Hypervisors
Direct Random I/Os Across Various Block Sizes

Host Server = Intel E7-8870@2.4GHz, 40 Cores, 256GB

0.0

200,000.0

400,000.0

600,000.0

800,000.0

1,000,000.0

1,200,000.0

1,400,000.0

1,600,000.0

1,800,000.0

512 B 1 KB 2 KB 4 KB 8 KB

I/O Size

I/O
 O

pe
ra

tio
ns

 P
er

 S
ec

on
d

(IO
PS

)

SLES11 SP3 KVM w/ virtio-blk-data-
plane (Single Guest)
RHEL 6.4 KVM w/ virtio-blk-data-
plane (Single Guest)
RHEL 6.3 KVM w/ PCI Pass-through
(Single Guest)
Microsoft Hyper-V (Single Host,
Multiple Guests)
VMware vSphere 5 (Single Guest)

vSphere 5.1

vSphere 5.0

Higher is better

PCI Pass-through (RHEL6.3)

virtio-blk-data-plane (SLES11 SP3 / upstream)

virtio-blk-data-plane (RHEL 6.4)

© 2013 IBM Corporation24 IBM, Linux, and Building a Smarter Planet

Single Virtual Machine
Direct Random I/Os at 4KB Block Size

Host Server = Intel E7-8870@2.4GHz, 40 Cores, 256GB

1,059,304

400,000

147,365

295,652

939199.0

380730.0

1601753.0

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000

VMware vSphere 5.1

Microsoft Hyper-V

Existing KVM w/ virtio-blk

KVM w/ PCI Pass-through
(no tuning)

KVM w/ PCI Pass-through
(performance tuned)

KVM w/ virtio-blk-data-
plane (no tuning)

KVM w/ virtio-blk-data-
plane (performance tuned)

I/O's Per Second (IOPS)

Impact of performance tuning

Impact of performance tuning

Single Virtual Machine
Direct Random I/Os at 4KB Block Size

Host Server = Intel E7-8870@2.4GHz, 40 Cores, 256GB

1,059,304

400,000

147,365

295,652

939199.0

380730.0

1601753.0

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000

VMware vSphere 5.1

Microsoft Hyper-V

Existing KVM w/ virtio-blk

KVM w/ PCI Pass-through
(no tuning)

KVM w/ PCI Pass-through
(performance tuned)

KVM w/ virtio-blk-data-
plane (no tuning)

KVM w/ virtio-blk-data-
plane (performance tuned)

I/O's Per Second (IOPS)

Impact of performance tuning

Impact of performance tuning

Performance tuning:
●Qlogic interrupt coalescing
●No delay accounting
●No random entropy contribution from block
devices
●Guest TSC clocksource

© 2013 IBM Corporation25 IBM, Linux, and Building a Smarter Planet

Other Recent Performance Features

© 2013 IBM Corporation26 IBM, Linux, and Building a Smarter Planet

• Improve interrupt processing overhead
– Reduce number of context switches between KVM hypervisor and guests

• Less CPU utilization
– Up to 10%

• Ideal for workloads with high I/O rates
– High storage I/O rates
– High incoming network traffic

• Enabled by default in guest Linux operating systems

• Availability
– Red Hat Enterprise Linux 6.4 (KVM guests)

Para-Virtualized End-Of-Interrupts (PV-EOI)

© 2013 IBM Corporation27 IBM, Linux, and Building a Smarter Planet

• Bio-based virtio-blk driver
– Skip I/O scheduler in KVM guest by adding bio-based path to virtio-blk (Asias He @

Red Hat)
• Similar to bio-based driver for ramdisk
• Shorter I/O path
• Less global mutex contention
• Performance – better (throughput, latency, vcpu utilization) for fast drives (e.g.

Ramdisk, SSDs), but not for spinning disks
– I/O scheduler's benefits (e.g. request merging) outweigh bio path's advantage

• Availability
– Upstream kernels (since 3.7)

• How to enable (disabled by default)
– Add 'virtio_blk.use_bio=1” to kernel cmdline
– Modprobe virtio_blk use_bio=1

Bio-based Virtio-blk

© 2013 IBM Corporation28 IBM, Linux, and Building a Smarter Planet

• SCSI support for KVM guests
– Rich SCSI feature set – true SCSI devices (seen as /dev/sd* in KVM guest)
– Virtio-scsi device = SCSI Host Bus Adapter (HBA)

• Large number of disks per virtio-scsi device
• Easier for P2V migration – block devices appear as /dev/sd*

– How to enable virtio-scsi
https://access.redhat.com/site/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_Guide/sect-
Managing_storage_controllers_in_a_guest.html

– Performance is OK (see next slide)
– Availability:

• Red Hat Enterprise Linux 6.4 and later
• SUSE Linux Enterprise Server 11 SP3 and later

– More information
• http://wiki.qemu.org/Features/VirtioSCSI
• “Better Utilization of Storage Features from KVM Guest via virtio-scsi” presentation at

2013 LinuxCon/CloudOpen by Masaki Kimura (Hitachi)

Virtio-scsi

http://wiki.qemu.org/Features/VirtioSCSI

© 2013 IBM Corporation29 IBM, Linux, and Building a Smarter Planet

Storage Performance: Virtio-blk vs. Virtio-scsi
Single KVM Guest (cache=none), Raw Virtual Image, Direct I/Os, 6 Physical Disk Arrays

0.0
100.0
200.0
300.0
400.0
500.0
600.0
700.0
800.0
900.0

1
Th

re
ad

8
Th

re
ad

s
16

Th
re

ad
s

1
Th

re
ad

8
Th

re
ad

s
16

Th
re

ad
s

1
Th

re
ad

8
Th

re
ad

s
16

Th
re

ad
s

1
Th

re
ad

8
Th

re
ad

s
16

Th
re

ad
s

1
Th

re
ad

8
Th

re
ad

s
16

Th
re

ad
s

1
Th

re
ad

8
Th

re
ad

s
16

Th
re

ad
s

1
Th

re
ad

8
Th

re
ad

s
16

Th
re

ad
s

Large File
Creates (Block
Size=256KB)

Sequential Reads
(Block

Size=256KB)

Large File
Creates (Block

Size=8KB)

Sequential Reads
(Block Size=8KB)

Random Reads
(Block Size=8KB)

Random Writes
(Block Size=8KB)

Mixed I/O (70%
Reads, 30%

Writes, Block

Th
ro

ug
hp

ut
 (M

B/
se

c)

Virtio-blk
Virtio-scsi

Virtio-scsi vs. Virtio-blk Performance

© 2013 IBM Corporation30 IBM, Linux, and Building a Smarter Planet

• Low Throughput / High Latencies
– Proper configuration & performance tuning are critical

• Storage virtualization types (para-virtualization vs. full emulation), device- vs. file-backed
virtual storage, image formats (raw vs. qcow2), guest caching mode (write-through vs. none),
I/O scheduler (deadline) are all important

• Support for high I/O rates
– KVM tops out at ~147,000 IOPS maximum per guest
– Need virtio-blk-data-plane technology feature to scale better (1.6 million IOPS per guest!)

• At least 50% higher than competing hypervisors
• Available as a Technology Preview in RHEL 6.4 and SLES 11 SP3

• Recent features
– PV-EOI ← reduce CPU utilization for workloads with high I/O & interrupt rates, need new

guest kernels
– BIO-based virtio-blk ← should help performance with fast storage (ramdisk, SSDs), but not

slower spinning disks
– Virtio-scsi

• Support for SCSI devices in KVM guests, easier P2V migration
• Performance is mostly comparable to virtio-blk
• Available in RHEL 6.4 and SLES 11 SP3

Recap

© 2013 IBM Corporation31 IBM, Linux, and Building a Smarter Planet

T h a n k Y o u

M erci

Grazie

Gracias

Obrigado

Danke

Japanese

English

French

Russian

German

Italian

Spanish

Brazilian Portuguese

Arabic

Traditional Chinese

Simplified Chinese

Hindi

Tamil

Thai

Korean

Hebrew

T h a n k Y o u

M erci

Grazie

Gracias

Obrigado

Danke

Japanese

English

French

Russian

German

Italian

Spanish

Brazilian Portuguese

Arabic

Traditional Chinese

Simplified Chinese

Hindi

Tamil

Thai

Korean

Hebrew

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

