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• Overview – KVM I/O architecture
– Key performance challenges for storage I/O in virtualized environments

• Solving key performance challenges
– Solutions & prototypes
– Performance results
– Performance recommendations

• Other recent performance features

• Recap
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KVM I/O Architecture … at 10,000 Feet

●Applications and guest 
OS run inside KVM 
Guest just like they run 
bare metal

●Guest interfaces with 
emulated hardware 
presented by QEMU

●QEMU submits I/Os to 
host on behalf of guest

●Host kernel treats 
guest I/Os like any 
user-space application
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• Low throughput / high latencies (compared to bare metal)
– Generally less than 30% of bare metal → configuration issue(s)
– Between 30% and 60% of bare metal → performance tuning
– With proper configuration + performance tuning → 90% or more

• Low I/O rates (IOPS)
– Some enterprise workloads require 100Ks I/Os Per Second (IOPS)
– Most difficult challenge for I/O virtualization!
– Current KVM tops out at ~147,000 IOPS
– VMware claimed vSphere v5.1 could achieve 1.06 million IOPS for a single guest

So … What Are The Key Performance Challenges?
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Issue – Low Throughput / High Latencies
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• Device assignment (pass-through)
– Pass physical device directly to guest
– High performance
– No device sharing among multiple guests
– Difficult for live migration
– PCI device limit (8) per guest

• Full virtualization – IDE, SATA, SCSI
– Good guest compatibility
– Bad performance (many trap-and-emulate operations), does not scale beyond 1 

thread ← Not recommended for enterprise storage

• Para-virtualization – virtio-blk, virtio-scsi
– Efficient guest ↔ host communication through virtio ring buffer (virtqueue)
– Good performance
– Virtualization benefits (e.g. device sharing among guests, etc.)

I/O Virtualization Approaches
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Virtio-blk Storage Configurations
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KVM Block I/O Performance
FFSB Benchmark w/ Direct I/O on LVM Volume

KVM Guest = 2 vCPUs, 4GB; Host = 16 CPUs, 12GB
Physical Storage = 8 x RAID10 Disk Arrays (192 Disks), 4 x DS3400 Controllers, 2 x FC Host Adapters
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Notes:
FFSB = Flexible File System Benchmark (http://sourceforge.net/projects/ffsb/)
Data Streaming (sequential reads, sequential writes) with block sizes of 8KB and 256KB 
Random Mixed Workloads = random reads, random writes, mail server, mixed DB2 workloads (8KB block size)

Storage Performance Results
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Storage Performance Recommendations

 Use VirtIO drivers (IDE emulation does NOT scale beyond 1 thread)
 Virtual Storage

 If possible, pass whole partitions or block devices to guest (device-backed virtual disks) instead of host files
 PCI pass-through is better than device-backed virtual disks, but cannot easily migrate

 Virtual Image Format
 RAW offers the best performance, but QCOW2 performance has improved significantly since RHEL 6.1 and upstream

 Guest Caching Mode
 cache = writethough is the default & provides data integrity in all cases (disk cache not exposed to guest)
 cache = writethrough is great for read-intensive workloads (host’s page cache enabled)
 cache = none is great for write-intensive workloads or workloads involving NFS remote storage (host’s page cache disable and 

disk write cache enabled)
 Guest I/O Model

 Linux AIO support (aio=native) provides better performance in many cases, especially with multiple threads
 I/O Scheduler

 Deadline I/O scheduler yields the best performance for I/O-intensive workloads (much better than the default CFQ scheduler)
 Miscellaneous

 Enable x2APIC support for guest  2% to 5% performance gain for I/O-intensive workloads
 Disable unnecessary features: delay accounting (nodelayacct kernel boot parameter), random entropy contribution (sysfs)
 Avoid memory over-commit in KVM host (much worse than CPU over-commit)

Proper Configuration & Performance Tuning make BIG difference!
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Storage Performance Recommendations (cont'd)
 KVM Guest Configuration:

 Use 2 or more virtual CPUs in the guest for I/O-intensive workloads
 Allocate enough memory in the guest to avoid memory overcommit
 Do not format virtual disks with ext4 on RHEL5

 RHEL5 does not have performance optimizations for ext4
 Use deadline I/O scheduler in the guest
 Use Time Stamp Counter (TSC) as clocksource (if host CPU supports TSC)
 64-bit guest on 64-bit host has the best I/O performance in most cases

 NFS Remote Storage
 If RHEL5.5 (or earlier version) is used on KVM host, need kvm-83-164.el5_5.15 or later

 Reduce number of lseek operations  up to 3X improvement in NFS throughput and 40% reduction in guest’s virtual 
CPU usage

 Patches are included in RHEL5.6 and later (and upstream QEMU)
 If RHEL6.0 or 6.1 is used on KVM host, need an errata package for RHEL6.1 (http://rhn.redhat.com/errata/RHBA-2011-

1086.html)
 RHEL6 QEMU uses vector I/O constructs for handling guest I/O’s, but NFS client (host) does not support vector I/O, so 

large guest I/O’s are broken into 4KB requests
 This issue was fixed in RHEL6.2 (NFS client now supports vector I/O)

 Use Deadline I/O scheduler
 Ensure NFS read / write sizes are sufficiently large, especially for large I/O’s
 Ensure NFS server(s) have enough NFS threads to handle multi-threaded workloads
 NFS exports = sync (default), w_nodelay
 For distributed parallel file-system with large block sizes used in cloud’s storage systems, need ability to avoid 

reading/writing multiple blocks for each I/O that is smaller than block size
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Issue – Low I/O Rates (IOPS)
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• Many enterprise workloads (e.g. databases, ERP systems, low-latency financial 
trading applications, etc.) require very high I/O rates
– Some demand well over 500,000 I/Os Per Second (IOPS)

• KVM can typically handle only up to ~147,000 IOPS
– Very high I/O rates present significant challenge to virtualization
– Primary reason why many enterprise workloads have not been migrated to virtualized 

environments

• Challenge from other hypervisors
– (2011) VMware vSphere 5.0 – 300,000 IOPS for single VM; 1 million IOPS for 6 VMs 

@ 8KB I/O size
– (2012) VMware vSphere 5.1 – 1 Million IOPS for a single VM @ 4KB I/O size
– (2012) Microsoft Hyper-V – 700,000 IOPS for a single host @ 512-byte I/O size

Some Background
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Possible Paths To Very High I/O Rates (1 million IOPS)

• PCI Pass-through (PCI Device Assignment)
– Currently stands at ~800,000 IOPS @ 8KB I/O size, ~950,000 IOPS @ 4KB I/O size
– Limit of 8 PCI devices per VM (guest)
– No virtualization benefits; difficult for live migration

• Virtio-blk Optimization
– Virtio-blk can traditionally support up to ~147,000 I/O Operations Per Second (IOPS)
– Performance profiling → Big QEMU Lock

• Allows core QEMU components to ignore multi-threading (historically)
• Creates scalability problems

– Need to bypass or relieve Big QEMU Lock as much as possible



© 2013 IBM Corporation14 IBM, Linux, and Building a Smarter Planet

Bypassing Big QEMU Lock in virtio-blk
• Vhost-blk

– Initially coded by Liu Yuan, new prototype by Asias He
– Submits guest I/Os directly to host via kernel threads (similar to vhost_net for network)
– Drawbacks: 

• Involves the kernel (ring 0 privilege, etc.)
• Cannot take advantage of QEMU features (e.g. image formats, etc.)
• Cannot support live migration

• “Data-Plane” QEMU
– Coded by Stefan Hajnoczi (~1500 LOC)
– Submits guest I/Os directly to host in user space (one user-space thread per virtual 

block device)
– Will become default mode of operations – eventually 
– No kernel change is required

Both approaches have comparable performance in our testing!
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Virtio-blk-data-plane:
– Accelerated data path for para-virtualized 

block I/O driver
– Using per-device dedicated threads and 

Linux AIO support in the host kernel for I/O 
processing – without going through QEMU 
block layer
• No need to acquire big QEMU lock

Availability
– Accepted upstream (qemu-1.4.0 or later) 
– Available as Technology Preview in Red 

Hat Enterprise Linux 6.4 and SUSE Linux 
Enterprise Server 11 SP3

“Data-Plane”
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QEMU Event 
Loop
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“Most exciting development in QEMU in the last 5 years!”
- Anthony Liguori (QEMU Maintainer)
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How To Enable Virtio-blk-data-plane?
Libvirt Domain XML

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
...
    <disk type='file' device='disk'>
      <driver name='qemu' type='raw' cache='none' io='native'/>
      <source file='path/to/disk.img'/>
      <target dev='vda' bus='virtio'/>
      <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
    </disk>
...
  <qemu:commandline>
    <qemu:arg value='-set'/>
    <qemu:arg value='device.virtio-disk0.scsi=off'/>
  </qemu:commandline>
  <!-- config-wce=off is not needed in RHEL 6.4 -->
  <qemu:commandline>
    <qemu:arg value='-set'/>
    <qemu:arg value='device.virtio-disk0.config-wce=off'/>
  </qemu:commandline>
  <qemu:commandline>
    <qemu:arg value='-set'/>
    <qemu:arg value='device.virtio-disk0.x-data-plane=on'/>
  </qemu:commandline>
<domain>

QEMU command-line

qemu -drive if=none,id=drive0,cache=none,aio=native,format=raw,file=path/to/disk.img \
     -device virtio-blk,drive=drive0,scsi=off,config-wce=off,x-data-plane=on
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• Current limitations
– Only raw image format is supported

• Other image formats depend on QEMU block layer
– Live migration is not supported
– Hot unplug and block jobs are not supported
– I/O throttling limits are ignored
– Only Linux hosts are supported (due to Linux AIO usage)

• On-going work (for upcoming QEMU releases)
– Patches have recently been submitted upstream to convert virtio-net to use 

“data-plane”
– Reduce the scope of big QEMU lock → moving to RCU (Read Copy Update)

BUT ....
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• Highest virtualized storage I/O rates ever reported for a single virtual machine 
(guest)

• Red Hat Enterprise Linux 6.4
– 1.20 million IOPS @ 8KB I/O size for a single guest
– 1.58 million IOPS @ 4KB I/O size for a single guest

• Upstream QEMU / SLES 11 SP3
– 1.37 million IOPS @ 8KB I/O size for a single guest
– 1.61 million IOPS @ 4KB I/O size for a single guest
– More efficient memory-mapping infrastructure (in QEMU)
– Approaching bare-metal limit of our storage setup

• 50% higher than the closest competing hypervisor (VMware vSphere 5.1)

• Low latencies and consistent throughput for storage I/O requests

Performance Results – “Data-Plane”
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• Needed a storage setup capable of delivering > 1 Million IOPS
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First Thing First
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qemu-kvm -M pc -mem-path /hugepages -m 7168 -cpu qemu64,+x2apic -smp 40 -name guest1 -uuid 1c047c62-c21a-1530-33bf-185bc15261d8 -boot c 
-drive if=none,id=root,file=/khoa/images/if1n1_sles11.img -device virtio-blk-pci,drive=root -drive if=none,id=drive-virtio-
disk1_0,file=/dev/sdc,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=5.0,multifunction=on,drive=drive-virtio-disk1_0,id=virtio-disk1_0 -drive if=none,id=drive-virtio-
disk1_1,file=/dev/sdd,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=5.1,multifunction=on,drive=drive-virtio-disk1_1,id=virtio-disk1_1 -drive if=none,id=drive-virtio-
disk1_2,file=/dev/sde,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=5.2,multifunction=on,drive=drive-virtio-disk1_2,id=virtio-disk1_2 -drive if=none,id=drive-virtio-
disk2_0,file=/dev/sdg,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=6.0,multifunction=on,drive=drive-virtio-disk2_0,id=virtio-disk2_0 -drive if=none,id=drive-virtio-
disk2_1,file=/dev/sdh,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=6.1,multifunction=on,drive=drive-virtio-disk2_1,id=virtio-disk2_1 -drive if=none,id=drive-virtio-
disk2_2,file=/dev/sdi,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=6.2,multifunction=on,drive=drive-virtio-disk2_2,id=virtio-disk2_2 -drive if=none,id=drive-virtio-
disk3_0,file=/dev/sdk,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=7.0,multifunction=on,drive=drive-virtio-disk3_0,id=virtio-disk3_0 -drive if=none,id=drive-virtio-
disk3_1,file=/dev/sdl,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=7.1,multifunction=on,drive=drive-virtio-disk3_1,id=virtio-disk3_1 -drive if=none,id=drive-virtio-
disk3_2,file=/dev/sdm,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=7.2,multifunction=on,drive=drive-virtio-disk3_2,id=virtio-disk3_2 -drive if=none,id=drive-virtio-
disk4_0,file=/dev/sdo,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=8.0,multifunction=on,drive=drive-virtio-disk4_0,id=virtio-disk4_0 -drive if=none,id=drive-virtio-
disk4_1,file=/dev/sdp,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=8.1,multifunction=on,drive=drive-virtio-disk4_1,id=virtio-disk4_1 -drive if=none,id=drive-virtio-
disk4_2,file=/dev/sdq,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=8.2,multifunction=on,drive=drive-virtio-disk4_2,id=virtio-disk4_2 -drive if=none,id=drive-virtio-
disk5_0,file=/dev/sds,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=9.0,multifunction=on,drive=drive-virtio-disk5_0,id=virtio-disk5_0 -drive if=none,id=drive-virtio-
disk5_1,file=/dev/sdt,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=9.1,multifunction=on,drive=drive-virtio-disk5_1,id=virtio-disk5_1 -drive if=none,id=drive-virtio-
disk5_2,file=/dev/sdu,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=9.2,multifunction=on,drive=drive-virtio-disk5_2,id=virtio-disk5_2 -drive if=none,id=drive-virtio-
disk6_0,file=/dev/sdw,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=10.0,multifunction=on,drive=drive-virtio-disk6_0,id=virtio-disk6_0 -drive if=none,id=drive-virtio-
disk6_1,file=/dev/sdx,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=10.1,multifunction=on,drive=drive-virtio-disk6_1,id=virtio-disk6_1 -drive if=none,id=drive-virtio-
disk6_2,file=/dev/sdy,cache=none,aio=native -device virtio-blk-pci,scsi=off,config-wce=off,x-data-
plane=on,addr=10.2,multifunction=on,drive=drive-virtio-disk6_2,id=virtio-disk6_2 -drive if=none,id=drive-virtio-
disk7_0,file=/dev/sdaa,cache=none,aio=native -device virtio-blk-pci,scsi

Qemu-kvm Command Line For “Data-Plane” Testing
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Single KVM Guest
RHEL 6.4 with virtio-blk-data-plane

FIO Benchmark, Direct Random I/Os (50% Reads, 50% Writes)
KVM Host = IBM x3850 X5 (Intel E7-8870@2.4GHz, 40 Cores, 256GB)

0.0

200,000.0

400,000.0

600,000.0

800,000.0

1,000,000.0

1,200,000.0

1,400,000.0

1,600,000.0

1,800,000.0

512 B 1 KB 2 KB 4 KB 8 KB

I/O Size

IO
PS

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

A
ve

ra
ge

 L
at

en
cy

 (m
s)

IOPS Average Read Latency (ms) Average Write Latency (ms)



© 2013 IBM Corporation22 IBM, Linux, and Building a Smarter Planet

KVM vs. Competing Hypervisors
Direct Random I/Os at 4KB Block Size

Host Server = Intel E7-8870@2.4GHz, 40 Cores, 256GB
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KVM vs. Competing Hypervisors
Direct Random I/Os Across Various Block Sizes

Host Server = Intel E7-8870@2.4GHz, 40 Cores, 256GB
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Single Virtual Machine
Direct Random I/Os at 4KB Block Size

Host Server = Intel E7-8870@2.4GHz, 40 Cores, 256GB
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Performance tuning:
●Qlogic interrupt coalescing
●No delay accounting
●No random entropy contribution from block 
devices
●Guest TSC clocksource
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Other Recent Performance Features
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• Improve interrupt processing overhead
– Reduce number of context switches between KVM hypervisor and guests

• Less CPU utilization 
– Up to 10%

• Ideal for workloads with high I/O rates
– High storage I/O rates
– High incoming network traffic

• Enabled by default in guest Linux operating systems

• Availability
– Red Hat Enterprise Linux 6.4 (KVM guests)

Para-Virtualized End-Of-Interrupts (PV-EOI)
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• Bio-based virtio-blk driver
– Skip I/O scheduler in KVM guest by adding bio-based path to virtio-blk (Asias He @ 

Red Hat)
• Similar to bio-based driver for ramdisk
• Shorter I/O path
• Less global mutex contention
• Performance – better (throughput, latency, vcpu utilization) for fast drives (e.g. 

Ramdisk, SSDs), but not for spinning disks
– I/O scheduler's benefits (e.g. request merging) outweigh bio path's advantage

• Availability
– Upstream kernels (since 3.7)

• How to enable (disabled by default)
– Add 'virtio_blk.use_bio=1” to kernel cmdline
– Modprobe virtio_blk use_bio=1

Bio-based Virtio-blk
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• SCSI support for KVM guests
– Rich SCSI feature set – true SCSI devices (seen as /dev/sd* in KVM guest)
– Virtio-scsi device = SCSI Host Bus Adapter (HBA)

• Large number of disks per virtio-scsi device
• Easier for P2V migration – block devices appear as /dev/sd*

– How to enable virtio-scsi
https://access.redhat.com/site/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_Guide/sect-
Managing_storage_controllers_in_a_guest.html

– Performance is OK (see next slide)
– Availability:

• Red Hat Enterprise Linux 6.4 and later
• SUSE Linux Enterprise Server 11 SP3 and later

– More information
• http://wiki.qemu.org/Features/VirtioSCSI
• “Better Utilization of Storage Features from KVM Guest via virtio-scsi” presentation at 

2013 LinuxCon/CloudOpen by Masaki Kimura (Hitachi)

Virtio-scsi

http://wiki.qemu.org/Features/VirtioSCSI
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Storage Performance: Virtio-blk vs. Virtio-scsi
Single KVM Guest (cache=none), Raw Virtual Image, Direct I/Os, 6 Physical Disk Arrays
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• Low Throughput / High Latencies
– Proper configuration & performance tuning are critical

• Storage virtualization types (para-virtualization vs. full emulation), device- vs. file-backed 
virtual storage, image formats (raw vs. qcow2), guest caching mode (write-through vs. none), 
I/O scheduler (deadline) are all important

• Support for high I/O rates
– KVM tops out at ~147,000 IOPS maximum per guest
– Need virtio-blk-data-plane technology feature to scale better (1.6 million IOPS per guest!)

• At least 50% higher than competing hypervisors
• Available as a Technology Preview in RHEL 6.4 and SLES 11 SP3

• Recent features
– PV-EOI ← reduce CPU utilization for workloads with high I/O & interrupt rates, need new 

guest kernels
– BIO-based virtio-blk ← should help performance with fast storage (ramdisk, SSDs), but not 

slower spinning disks
– Virtio-scsi

• Support for SCSI devices in KVM guests, easier P2V migration
• Performance is mostly comparable to virtio-blk
• Available in RHEL 6.4 and SLES 11 SP3

Recap
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